Mycotoxins....What can we do?
By
Steve Massie, MS, PAS
Fast Start Mod #8

What are Mycotoxins?
• They are a defense mechanism produced by molds as a ways of protecting themselves from being consumed by other biological creatures.
• Prevent bugs and rodents from eating the mold that was growing on the grain.

Molds
• Know there are more than 235,000 different types of molds.
• Commonly put into 12 classes
• About 1,900 different molds produce Mycotoxins.
• Most of these are in 3 classes.
• These classes produce 119 known toxins
• We commonly test for 4 or 5 toxins.

3 Common Classes of Molds
• Fusariums
• Penicilliums
• Aspergillus

Fusarium Molds
• Most common mold in grains
• Common Toxins Produced
 • DON (vomitoxin)
 • Zearalenone
 • T-2 Toxin
 • Other toxins
 • Fumonisin B1 & B2
 • Fusaric Acid
 • DAS

Over Generalization
• “Red Molds”
• Starch eaters
• Grow best w/ big temp swings
• Like “drier” feedstuffs
• Grow in “pockets”
DON Corn Silage

Fusarium Toxins
- DON
 - Feed refusal
 - Reduced milk production
 - Unthriftiness
 - Immunosuppression
 - Diarrhea
 - Repo problems (poor heats)

Fusarium Toxins
- Zearalenone – The Repo Toxin
 - Infertility
 - Prolonged heats (Crazy Heats)
 - Off heat cycles
 - Pregnant Cows showing heat
 - Lower conception rates
 - Prolapses
 - Abortions
 - Feed take, milk production, diarrhea

Fusarium Toxin
- T-2 Toxin
 - Feed refusal
 - Coughing
 - Higher SCC
 - Bloody manure (dark color)
 - Diarrhea
 - Rough coats

Penicillium Molds
- “Blue Molds”
- Starch eaters (found in grain)
- Like “wet feeds”
- Common Toxin
 - Ochratoxin
 - Other toxins
 - Secalonic acid, Patulin, PR toxin, Roquefortin

Feed it?
Penicillium Toxin
- Ochratoxin
 - High SCC
 - Poor Milk Production
 - Fatty Livers in Fresh cows
 - Poor urine output
 - Slow growth in calves
 - Thin cows
 - Low BF%

Aspergillus Molds
- “Grey Molds” – mix blue/green (glow)
- Like it “Hot”
- Like high humidity
- “Drought Molds”
- Soil-borne spores
- Grain, forage, (Cottonseed)
- Toxins – Aflatoxin & Gliotoxin

Aspergillus Mold

Aspergillus Toxins
- Aflatoxins (B1, B2, G1, G2, B2A, Ga)
 - Liver damage (ketosis in fresh cows)
 - High SCC
 - Bleeding (slow clotting)
 - Poor digestion => weight loss (poor repo)
 - Poor BF% (higher DA%)
 - Passes to milk (FDA test)

Aspergillus Toxin
- Gliotoxin
 - Bloody diarrhea
 - Hemorrhagic Bowel Syndrome (HBS)

Corn Silage Test

<table>
<thead>
<tr>
<th>Toxin</th>
<th>Result</th>
<th>Tested Level</th>
<th>Method</th>
<th>Detection Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin B1</td>
<td>NEG/POS</td>
<td>TLC/FLC</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td>Aflatoxin B2</td>
<td>NEG/POS</td>
<td>TLC/FLC</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td>Aflatoxin G1</td>
<td>NEG/POS</td>
<td>TLC/FLC</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td>Aflatoxin G2</td>
<td>NEG/POS</td>
<td>TLC/FLC</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td>Aflatoxin B2A</td>
<td>NEG/POS</td>
<td>TLC/FLC</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td>Deoxynivalenol</td>
<td>NEG/POS</td>
<td>TLC</td>
<td>0.1 ppm</td>
<td></td>
</tr>
<tr>
<td>DON</td>
<td>3.1 ppm</td>
<td>TLC</td>
<td>0.1 ppm</td>
<td></td>
</tr>
<tr>
<td>15 Acetyl-DON</td>
<td>0.5 ppm</td>
<td>TLC</td>
<td>0.1 ppm</td>
<td></td>
</tr>
<tr>
<td>3 Acetyl-DON</td>
<td>0.5 ppm</td>
<td>TLC</td>
<td>0.1 ppm</td>
<td></td>
</tr>
<tr>
<td>T-2 Toxin</td>
<td>0.5 ppm</td>
<td>TLC</td>
<td>0.1 ppm</td>
<td></td>
</tr>
</tbody>
</table>

These results are intended for animal health diagnostic purposes only.
Samples in 2007

- DON - 18/21 samples
- T-2 – 1/14 samples
- Zearalenone - 0/14 samples
- Ochratoxin - not tested
- Aflatoxin – 0/14
- Gliotoxin – 1/2 (suspected)

Samples in 2012

- DON - 08/28 samples
- T-2 – 0/12 samples
- Zearalenone - 2/12 samples
- Ochratoxin - 0/6 samples
- Aflatoxin – 6/56 samples
- Gliotoxin – 1/2 (suspected)

Why some years?

- Molds need moisture, warm temperatures, neutral pH, oxygen, and a food source to grow.
- Very warm, very wet fall
- Drought damage
- Insect damage
- Bird damage
- Corn on Corn plantings (no-till)

Must Remember

- Mold grow in the fields (produces toxins)
- Mold stops growing when
 - Runs out of oxygen
 - pH makes a change
 - Moisture is too high/low
 - Too hot/too cold
- Mold in the field = Mold in the silo
- Mold stops growing, toxins are still there.

Stop Mold Growth in Feedstuffs

- Take away the food source
- Take away the oxygen
- Change the pH (faster better)
- Take away the moisture
- Make it too cold

Keeping Molds Out

- Minimize stress on plants
- Pick insect resistant plants
- Timely harvest
- Fast ensiling
- Add an acid/bugs that produce acid
- Leaky silos (Blue Tubes/Bags/Bunkers)
- Poor face management
I think I got a problem, now what?

- Do you Really have a problem?
- DON
- Feed refusal
- Reduced milk production
- Unthriftiness
- Immunosuppression
- Diarrhea
- Repo problems (poor heats)

I think I got them, now what

- Do you REALLY have a problem?
- Dilution is the Solution!
 - Get the TMR below 0.5 PPM (20 PPB Afl)

Can’t Dilute (Inventory)

- Can we remove?
- Can we swap feeds?
- Ration changes
 - Increase immune response (Se, Zn, A, E)
 - Increase rumen function (higher fiber)
 - Add a toxin binder (FDA claims)

Toxin Binders

- Four types
 - Clay Products
 - Bentonite, Feedbond, Geobond
 - Aluminosilicates
 - Nutrisound
 - Yeast Products
 - MTB 100, Ominigen AF
 - Combinations
 - Mycodoc

In Vitro Mycotoxin Binding Studies

<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>T-Bind</th>
<th>Mycotex Product</th>
<th>UltraSorb</th>
<th>Test product Test period 1</th>
<th>Test period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin</td>
<td>100</td>
<td>69</td>
<td>45</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Fumonisin</td>
<td>100</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
<td>63</td>
</tr>
<tr>
<td>Ochratoxin</td>
<td>30</td>
<td>63</td>
<td>81</td>
<td>80</td>
<td>98</td>
</tr>
<tr>
<td>Vomitoxin</td>
<td>30</td>
<td>63</td>
<td>81</td>
<td>80</td>
<td>98</td>
</tr>
<tr>
<td>Zearalenone</td>
<td>30</td>
<td>63</td>
<td>81</td>
<td>80</td>
<td>98</td>
</tr>
</tbody>
</table>

Economics of Testing

- Testing for 4 (or 5) major toxins
 - $85/test
 - 10 days for results
 - Snapshot of that day at that bunk spot.
 - "How much toxin binder can I feed for $65?"
 - 3 or 4 days for results.
 - Feed 2 weeks and see what happens.
Questions?

- Thanks